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Abstract 

In December 2019 SARS-CoV-2 emerged in Wuhan, China, leading to a pandemic in March 

2020. Although clinical presentation of COVID-19 ranges from no symptoms to acute 

respiratory and multiorgan failure, the vast majority of the patients only experience flu-like 

symptoms. However because of highly contagious nature of the disease, overall COVID-19 is 

considered a global health burden. Since ACE2, TMPRSS2 expressing cells are the potential 

hosts for the virus, inhibiting TMPRSS2 by clinically proven protease inhibitors Bromhexine, 

Aprotinin, Camostat and Nafamostat are suggested as potential treatments for COVID-19. 
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Highlights 

–SARS-CoV-2 infects ACE2, TMPRSS2 expressing cells 

–Inhibiting TMPRSS2 hinders infection of host cells with SARS-CoV-2  

–Bromhexine, Aprotinin, Camostat and Nafamostat inhibit TMPRSS2 

–Bromhexine, Aprotinin, Camostat and Nafamostat may contribute to treatment of COVID-

19 
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Introduction 

Coronavirus disease 2019 (COVID-19) is an illness that is caused by Severe Acute 

Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) (Zheng et al.,2020; Wu and 

McGoogan 2020). In December 2019 SARS-CoV-2 emerged in Wuhan, China and thereafter 

spread throughout the world and in March 11, 2020, World Health Organization declared 

COVID-19 a pandemic  (Zheng et al., 2020; Wu and McGoogan 2020). 

Currently, COVID-19 seems to transmit from person to person via respiratory droplets (Wu 

and McGoogan 2020). Additionally, as in cases of Severe Acute Respiratory Syndrome 

Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-

CoV), SARS-CoV-2 is also possibly transmitted via fecal-oral route (Yeo et al., 2020). 

Common signs and symptoms of COVID-19 include fever, sore throat, cough, malaise, 

headache, nausea, vomiting, diarrhea and breathlessness (Zheng et al., 2020; Wu and 

McGoogan 2020; WHO, 2020b; Wu and McGoogan 2020; Chan et al., 2020). The spectrum 

of clinical symptoms of COVID-19 varies from mild, (with no or mild pneumonia), to severe 

and critical with respiratory failure and multiorgan dysfunction (Wu and McGoogan, 2020; 

WHO, 2020b; Yeo et al., 2020). 

Because of highly contagious nature of SARS-CoV-2 (WHO, 2020b; Yeo et al., 2020) and 

potential mortality (Wu and McGoogan 2020; WHO, 2020b; Thienemann et al., 2020) it is 

very important to find treatments to prevent and/or perhaps control the disease (WHO, 

2020b). This article is dedicated to theoretical evaluation of possible effects of some already 

available medications, including Bromhexine, Aprotinin, Camostat and Nafamostat, on 

pathogenesis of SARS-CoV-2. 

 

Pathophysiology of COVID-19 

SARS-CoV-2 engages with Angiotensin Converting Enzyme-2(ACE-2) as entry receptor and 

uses serine protease TMPRSS2 (Serine protease 10) for S protein priming and fusion of viral 

and cellular membranes, to enter the host cell. (Hoffmann et al., 2020a). ACE-2 converts 

Angiotensin-2 to angiotensin-(1-7) (Ang-(1-7)) which stimulates MAS oncogene. This 

ACE2- Ang-(1–7)-Mas axis, elicits vasodilatory, anti-thrombotic, anti-oxidative, anti-

inflammatory, anti-apoptotic, anti-proliferative, anti-hypertrophic, anti-fibrotic, natriuretic 

and diuretic effects and also enhances endothelial function (Iwai and Horiuchi, 2009). ACE-2 

receptors are expressed on the endothelia and smooth muscle cells of nearly all organs, as 

well as alveolar epithelial cells, myocytes, renal glomerular and tubular cells, intestinal 



mucosal cells, brain neurons, and testicles (Hamming et al., 2020; Crackower et al., 2002; 

Donoghue et al., 2000; Tikellis et al., 2003; Tipnis et al., 2000; Williams and Scholey, 2018; 

Xu et al., 2011).  

 TMPRSS2 is a mostly membrane-bound serine-protease that promotes metastasis of prostate 

cancer, increases expression of some matrix metalloproteinases and in hepatocytes it 

contributes to tyrosin kinase signalling pathways (Lucas et al., 2014).  However, the exact 

physiological role of TMPRSS2 has not yet been fully explored (Kim et al., 2006, Lucas et 

al., 2014). TMPRSS2 is expressed on endothelial cells, epithelia of the gastrointestinal, 

urogenital and respiratory tract, as well as alveolar epithelial cells, myocytes, hepatocytes, 

salivary glands and prostate (Aimes et al., 2003; Paoloni et al., 1997; Glowacka et al., 2011; 

Vaarala et al., 2001). According to simultaneous expression of ACE-2 and TMPRSS2 in 

alveolar epithelial and endothelial cells, theoretically these cells could be the possible 

primary host cells for SARS-CoV-2. 

There are two different types of alveolar epithelial cells in the alvoli. Type I cells, which 

make up 90% of the alveolar epithelium, and Type II cells which serve as stem cell of the 

alveoli, they proliferate and give rise to all alveolar epithelial cells (Fehrenbach, 2001; 

Famous et al., 2017). Type II alveolar epithelial cells also synthesise, secrete, and recycle all 

components of the surfactant and contribute to alveolar repair (Fehrenbach, 2001; Famous et 

al., 2017).  Destruction of Type II cells, decreases intracellular stores, secretion and recycling 

of surfactant and thereby impairs alveolar function and decreases lung compliance 

(Fehrenbach, 2001; Famous et al., 2017). Compared to Type-I alveolar epithelial cells, Type 

II cells express more ACE2 on their surface, which favours implantation of SARS-CoV-2  

(McGonagle et al., 2020; Hamming et al., 2004; Fehtenbach, 2001). As SARS-CoV-2 

implants and replicates in Type II cells, as a reparative reaction, these cells start to proliferate 

(McGonagle et al., 2020; Chan et al., 2020; Fehrenbach, 2001; Famous et al., 2017). As 

number of Type II cells increases, the virus infects them and replicates to a higher extent, 

leading to high viral load and rapidly progressing fulminant pneumonia (Chan et al., 2020; 

Fehrenbach, 2001; Famous et al., 2017) (Figure 1, 1-6). 

At the time of alveolar injuriy, Type II cells express Inter-Cellular Adhesion Molecule-

1(ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) and release the 

chemoattractants that attract monocytes and macrophages to the place, and these immune 

cells release several inflammatory cytokines such as TNF-alpha, which prompts Type II cells 

to stimulate expression of P-selectin in perialveolar capillary network (Kuebler et al., 2000; 

Rosseau et al., 2000). This further increases local recruitment of immune cells and causes a 



rapid and extensive inflammatory response (Famous et al., 2017; Kuebler et al., 2000; 

Rosseau et al., 2000). As a consequence of inflammation and vasculoendothelial damage, 

TMPRSS2 is expressed on endothelial surface of capillaries to a higher extent (Aimes et al., 

2003; Famous et al., 2017). Based on this scenario, it is concluded that subsequent expression 

of higher amounts of ACE2 and TMPRSS2 on endothelial surface of inflamed perialveolar 

capillary network (Aimes et al., 2003) and Type II cells (Fehrenbach, 2001), may contribute 

to high viral burden. This sequence of events could lead to ARDS and to dissemination of 

SARS-CoV-2 throughout the circulation, causing viral sepsis, massive inflammatory 

response, cardiovascular complications and multiorgan failure, which are the major leading 

causes of mortality and morbidity of COVID-19 patients (Zheng et al., 2000; McGonagle et 

al., 2020; Wu and McGoogan, 2020; WHO, 2020b; Chan et al., 2020; Thienemann et al., 

2020) (Figure 1, 7-15). 

 

A Preventive and Therapeutic approache to COVID-19 

 

Considering the above scenario, it is reasonable to hypothesize that by inhibiting implantation 

of SARS-CoV-2 in the Type II cells and perialveolar capillary network, we may hinder high 

viral burden and further septicaemia, massive inflammatory response and multiorgan failure. 

In this regard, one may think about decreasing expression, release and/or activity of ACE2 

and TMPRSS2.  

However, it has been shown that attenuation of ACE2 aggravates oxidative stress and 

inflammation and increases permeability of the alveolar-capillary barrier, reinforces sodium 

and water retention, worsens pulmonary edema and accelerates respiratory deterioration  

(Gopallawa and Uhal, 2014; Simoes e Silva et al., 2013). 

 In contrast, a great body of evidence demonstrates that decreasing expression and/or activity 

of TMPRSS2 is a relatively safe and an effective method for treatment of viral infections that 

are caused by viruses (such as MERS-CoV, SARS-CoV, SARS-CoV-2,  several H1N1 

subtypes of influenza A viruses and Asian H7N9 influenza virus) that utilize TMPRSS2 for 

implantation in host cells  (Hoffmann et al., 2020a; Hoffmann et al., 2020b; Sanders et al., 

2020; Bestle et al., 2020; Bittmann et al., 2020; Sonawane et al. 2020; Shen et al., 2017; 

Glowacka et al., 2011; Hamming et al., 2004). These studies have shown that virulence of the 

above-mentioned viruses depend on serine protease activity of TMPRSS2 (Hoffmann et al., 

2020a; Hoffmann et al., 2020b; Sanders et al., 2020; Bestle et al., 2020; Bittmann et al., 2020; 

Sonawane et al. 2020; Shen et al., 2017; Glowacka et al., 2011; Hamming et al., 2004). In 



these viral infections reducing the level of activity of TMPRSS2, is followed by a significant 

decrease in the rate of implantation, local replication, dissemination and secondary 

replication of the viruses  (Hoffmann et al., 2020a; Hoffmann et al., 2020b ; Shen et al., 2017; 

Glowacka et al., 2011). Since SARS-CoV-2 is also one of the viruses that uses TMPRSS2 for 

implantation, it is suggested that inactivating TMPRSS2 with clinically proven TMPRSS2 

inhibtors can contribute to treatment of COVID-19 (Hoffmann et al., 2020a; Sanders et al., 

2020; Bestle et al., 2020; Bittmann et al., 2020; Sonawane et al. 2020). Camostat,  

Nafamostat and Aprotinin are some of these TMPRSS2 inhibitors and are shown to reduce 

the rate of infection of lung cell line (Calu-3) by SARS-CoV-2, rendering these medications 

as potential treatments for COVID-19(Hoffmann et al., 2020a; Hoffmann et al., 2020b; 

Yamamoto et al., 2020; Bestle et al., 2020; Sonawane et al. 2020).  

 

TMPRSS2-inhibitors 

 

Bromhexine and its active metabolite Ambroxol: Bromhexine is a plant derived, 

mucolytic medication with a wide therapeutic window and few reported adverse effects in 

adults (Zanasi et al., 2017). Bromhexine has been used to decrease viscosity of pulmonary 

mucosal secretions, aiding  mucocilliary clearance of the lungs and to supress cough (Irwin 

and Curley, 1991; Zanasi et al., 2017).  

Bromhexine hydrochloride is shown to inhibit protease activity of TMPRSS2 in metastatic 

prostate cancer of mice and accordingly it is hypothesized that it could also be used for 

treatment of both influenza and coronavirus infections (Bestle et al., 2020; Sonawane et al., 

2020; Shen et al., 2017; Lucas et al., 2014). Indeed, Bromhexine interacts with Gln438 and 

other residues present in the active site pocket of TMPRSS2 and inhibits TMPRSS2 mediated 

activation of a zymogen precursor of tissue plasminogen activator (Sonawane et al., 2020; 

Lucas et al., 2014).  In body, Bromhexine is largely converted into Ambroxol (Malerba and 

Ragnoli, 2008). As the main active metabolite of Bromhexine, Ambroxol enhances 

production of surfactant and has antioxidative, anti-inflammatory properties (Malerba and 

Ragnoli, 2008; Seifart et al., 2005 ).  It is shown that Ambroxol attenuates chemotaxis of 

immune cells to the site inflammation, decreases secretion of Interferon-γ (IFNγ), TNF-alpha, 

IL-1β, IL-6, IL-8 as well as arachidonic acide metabolites, and reduce lipid peroxidiation of 

inflamed tissues (Beeh et al., 2008; Malerba and Ragnoli, 2008). In addition high dose 

Ambroxol improves course and outcomes of ARDS (Wu et al., 2014). 



Bromhexine and Ambroxol are available in form of syrups, tablets and injectable solutions 

(Zanasi et al., 2017; Cazan et al., 2018; Kantar et al., 2020). In addition a Lung-targeting 

Injectable Microsphere Bromhexine Hydrochloride Solution is also available and is shown to 

deliver a significantly higher concentration of the medication into the lungs (Liu et al., 2012). 

To our knowledge, Bromhexine is a safe medication and reported adverse effects of the 

medication in adults and children six years of age and over include nausea, rash, 

vomiting, diarrhea  that are mild and rare (Zanasi et al., 2017; WHO, 2015). However there 

are some reports about rare but serious allergic reactions associated with the use of 

Bromhexine, in children younger than six years of age (WHO, 2015). Thereby Bromhexine 

should only be used in adults and children six years of age and over (WHO, 2015). In order to 

boost antioxidative and anti-inflammatory properties of Bromhexine, Ambroxol can be added 

to the medication (Deretic and Timmins, 2019). Clinical evidences reveal that Ambroxol is a 

relatively safe, efficacious and well tolerated medication, with a well-balanced and 

favourable benefit-risk profile (Cazan et al., 2018; Kantar et al., 2020). Thereby Bromhexine 

(plus Ambroxol) can be considered as a candidate for primary prevention and/or treatment of 

COVID-19. 

Aprotinin: Aprotinin, the basic trypsin inhibitor of bovine pancreas, is a 58 amino acid broad 

spectrum serine protease inhibitor (Bestle et al., 2020). Through inhibition of killikrein, 

thrombin and plasmin, it attenuates inflammatory, coagulation and fibrinolytic pathways 

(Bestle et al., 2020; Westaby, 1993). Under the trade name Trasylol, injectable Aprotinin has 

been used to reduce risk of bleeding during major surgeries (Westaby, 1993). In Russia 

inhaled Aprotinin is approved to treat mild-to-moderate forms of influenza and parainfluenza 

in humans (Ovcharenko and Zhirnov, 1994). Aprotinin inhibits serine protease activity of 

TMPRSS2 in a dose-dependent manner and when it is used in aerosolized form, it is shown 

to reduce the rate of mortality of influenza and parainfluenza by more than 50% in mice  

(Böttcher et al., 2009; Ovcharenko and Zhirnov, 1994). Aprotinin is also shown to inhibit 

implantation of SARS-CoV-2 in Clu-3 lung cells in a dose dependent manner (Bestle et al., 

2020). However, atrial fibrillation, fever and nausea are amongst the adverse effects of the 

medication (Westaby, 1993; Cosgrove et al., 1992). Accordingly further studies could 

evaluate possible therapeutic effects of inhaled and injectable Aprotinin on the course and 

outcomes of COVID-19. 

Camostat and Nafamostat: Camostat, an oral serine protease inhibitor, is used for treatment 

of chronic pancreatitis and postoperative reflux esophagitis in some countries
 
(Yamamoto et 

al., 2016). Camostat restrains Trypsin and thereby inhibits Plasmin, Kallikrein and Thrombin 



(Ramsey et al., 2019).  It is also shown to reduce the rate of infection of Calu-3 lung cells 

by SARS-CoV-2 (Hoffmann et al., 2020a).  

Reported adverse effects of Camostat such as pruritus, increased thirst and appetite, and light 

headedness are usually tolerable (Ramsey et al., 2019).     

Nafamostat is another broad spectrum synthetic serine protease inhibitor with anticoagulant 

and anti-inflammatory properties that inhibits prothrombin, coagulation factor X, coagulation 

factor XII, Trypsin-1, Kallikrein-1 and ICAM-1 (Kim et al., 2016). Currently in Japan 

parental Nafamostat is used for patients undergoing continuous renal replacement therapy to 

prevent coagulation and clot formation during extracorporeal circulation (Miyatake et al., 

2017). Nafamostat, is an antioxidant, reduces levels of interleukin (IL)-6 and IL-8, inhibits 

TNF-alpha-induced oxidative stress, and decreases the rate of endothelial cell apoptosis 

(Kang et al., 2015). Both Camostat and Nafamostat interact with Asp435, Ser441 and His296 

residues of TMPRSS2 and inhibit its action (Sonawane et al. 2020). They are shown to 

significantly reduce the rate of implantation of MERS-CoV and SARS-CoV-2 in Calu-3 lung 

cells (Hoffmann et al., 2020a ; Hoffmann et al., 2020b; Yamamoto et al., 2020; Yamamoto et 

al. 2016). However, Nafamostat does not seem to be as safe as Camostat and it is reported to 

have adverse effects such as agranulocytosis, hyperkalemia, anaphylaxis, and cardiac arrest 

(Muto et al., 1994). 

Accordingly, future studies could evaluate possible therapeutic effects of Camostat on course 

and outcomes of COVID-19, while Nafamostat is better to be reserved for severe and critical 

cases of COVID-19, who suffer from severe inflammatory response and cytokine storm. 

Furthermore, WHO guidelines recommend extracorporeal membrane oxygenation (ECMO) 

to treat severe and critical COVID-19 patients who usually suffer from refractory hypoxemia 

and ARDS (WHO, 2020a). Nafamostat alleviates ARDS and also prevents coagulation and 

clot formation during extracorporeal circulation in these cases (Han et al., 2011; Uchiba et al., 

1997). Thereby Nafamostat may be of value in COVID-19 patients who suffer from ARDS 

and/or need ECMO. 

 

Conclusion 

 

 COVID-19 pandemic is a global health burden. Many clinical trials have taken place and 

therapeutic efficacy of many medications such as Tocilizumab, Sarilumab, Arbidol, 

Chloroquine, Hydroxychloroquine, Lopinavir, Darunavir, Ribavirin, Remdesivir and 

Favipiravir are being evaluated but since yet, none has been approved as the licensed 



treatment for the disease (Sanders et al., 2020). Theoretically, TMPRSS2 inhibitors such as 

Bromhexine, Aprotinin, Nafamostat and Camostat, may reduce primary transmission, viral 

load, spread, dissemination and secondary replication of SARS-CoV-2 (Sanders et al., 2020; 

Bestle et al., 2020; Bittmann et al., 2020; Sonawane et al. 2020). Aprotinin,Camostat and 

Nafamostat are already shown to reduce the rate of implantation of the SARS-CoV-2 in Calu-

3 lung cells (Hoffmann et al., 2020a; Hoffmann et al., 2020b; Yamamoto et al., 2020; Bestle 

et al., 2020; Sonawane et al. 2020). 

 Currently, several clinical trials are being conducted to evaluate possible therapeutic effects 

of Camostat (NCT04321096, NCT04338906, NCT04353284), Nafamostat (NCT04352400) 

and Bromhexine (NCT04273763, NCT04340349, IRCT20200317046797N4) on the course 

and outcomes of COVID-19.  

Since Bromhexin facilitates mucocilliary clearance of lungs and reduces intensity and 

frequency of coughing, we have hypothesized that it may reduce the rate of primary and 

secondary transmission of COVID-19.  Since it is metabolized into Ambroxol, which is 

shown to improve course and outcomes of ARDS (Wu et al., 2014), we have hypothesized 

that Bromhexin may improve outcomes of COVID-19. Ambroxol also decreases secretion of 

IFNγ, TNF-alpha, IL-1β, IL-6, IL-8, which are all shown to be up-regulated during COVID-

19 (Wan et al., 2020; McGonagle et al., 2020; Wu et al., 2014; Beeh et al., 2008). Thereby 

we have hypothesized that addition of Ambroxol to Bromhexine may increase possible 

therapeutic effects of Bromhexine on course of COVID-19 (Figure 1, A-H). 

For future studies, oral Camostat and/or Bromhexine (plus Ambroxol) as well as inhaled 

Aprotinin could be considered for primary prevention and/or treatment of mild and moderate 

cases of the disease. Whereas Parental Nafamostat, Aprotinin and/or Lung-targeting 

Injectable Bromhexine are better to be reserved for sever and critical cases of COVID-19. 

Nafamostat could be used as an anticoagulant in those who need ECMO (Han et al., 2011). 

Nafamostat and/or Ambroxol improve course and outcomes of ARDS (Wu et al., 2014; 

Uchiba et al., 1997) and we have hypothesized that, addition of Ambroxol to current 

therapeutic regiments of COVID-19 may facilitate treatment of the disease. We have also 

hypothesized that Ambroxol and Nafamostat may elicit accumulative anti-inflammatory 

effect. 

In summary, SARS-CoV-2 utilizes ACE2 and TMPRSS2 to infect primary host cells and 

thereafter it may rapidly disseminate through the lungs and other parts of the body, causing 

Acute Respiratory Distress Syndrome (ARDS), endocarditis, myocarditis and multi-organ 

failure. Accordingly TMPRSS2 inhibitors, Bromhexine, Aprotinin, Camostat and Nafamostat 



are suggested as potential treatments for COVID-19 and in vitro, Aprotinin, Camostat and 

Nafamostat are shown to inhibit SARS-CoV-2. 
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 Figure 1: 1. SARS-CoV-2 infects alveolar cells. 2. Type II alveolar cells chemotactically 

attract macrophage and monocytes. 3. Macrophages and monocytes release chemoattractants 

and proinflammatory cytokines. 4. Chemoattractants and proinflammatory cytokines 

stimulate proliferation of type II alveolar cells. 5. Type II alveolar cells stimulate expression 

of P-Selectin in perialveolar capillary network. 6.  Chemoattraction of immune cells and 

subsequent alveolar inflammation stimulate proliferation of type II alveolar cells, constituting 

a vicious cycle. 7. Inflammation causes vasculoendothelial damage. 8.  Expression of 

TMPRSS2 increases in endothelium of damaged vessels. 9. SARS-CoV-2 infects inflamed 

endothelial cells to a higher extent. 10. Another vicious cycle links vasculoendothelial 

damage, increased expression of TMPRSS2 and increased endothelial infection together and 

causes high viral load. 11. Viruses find their way to circulation and cause viral sepsis. 12. 

Viral sepsis accelerates dissemination of SARS-CoV-2 throughout body. 13.  Over-reaction 

of immune system to high viral burden leads to cytokine Storm. 14. Cytokine storm causes 

systemic inflammatory response. 15.  Systemic inflammatory response is complicated by 

ARDS, cardiovascular complication, and multiorgan Failure. A. TMPRSS2 inhibitors, 



Bromhexine, Aprotinin, Camostat and Nafamostat  hinder implantation of SARS-CoV-2 in 

alveolar cells. B.  Nafamostat and Ambroxol, reduce alveolar inflammation and alleviate 

ARDS. C. TMPRSS2 inhibitors, inactivate expressed TMPRSS2. D. TMPRSS2 inhibitors 

hinder implantation of SARS-CoV-2 in endothelial cells, reduce vasculoendothelial damage 

and break the vicious cycle of vasculoendothelial damage, increased expression of 

TMPRSS2, and endothelial infection. E. TMPRSS2 inhibitors hinder dissemination and 

secondary replication of SARS-CoV-2 throughout body. F. Nafamostat and Ambroxol down 

regulate expression of IFNγ, TNF-alpha, IL-1β, IL-6, and IL-8. G. Nafamostat and Amroxol 

alleviate systemic inflammatory response. H. TMPRSS2 inhibitors block all the steps which 

contribute to ARDS, Cardiovascular complications and multiorgan failure. 

 

 

 

 

 

 

 

 

 

 


