Artificial intelligence in drug discovery: how long before we see the real impact?

Posted: 14 December 2017 | | No comments yet

A new race is well underway involving big pharma and big data companies to see who can most effectively mine the new massive data using artificial intelligence (AI). The aim: reducing costs by using targeted in silico analysis, reducing in vitro and in vivo screening, and reviewing huge quantities of preclinical or clinical image data. A key question still asked is can AI effectively and accurately predict properties of new drug candidates?

Artificial intelligence

All major pharma (AstraZeneca, GSK, Merck, Johnson & Johnson, and Pfizer) are embracing AI. What’s really exciting is that there is a shift beyond machine learning strategies (workhorse tools to free up experts’ review of repetitive data) towards deep learning approaches that make new and unknown connections between the data. Who will win this new data-race isn’t merely determined by how much money is spent, but how effectivity and collaboratively companies will deploy these new data mining tools to their projects.

The rest of this article is restricted - login or subscribe free to access

Drug target review issue 1 2018 coverThank you for visiting our website. To access this content in full you'll need to login. It's completely free to subscribe, and in less than a minute you can continue reading. If you've already subscribed, great - just login.

Why subscribe? Join our growing community of thousands of industry professionals and gain access to:

  • quarterly issues in print and/or digital format
  • case studies, whitepapers, webinars and industry-leading content
  • breaking news and features
  • our extensive online archive of thousands of articles and years of past issues
  • ...And it's all free!

Click here to Subscribe today Login here


Related organisations

Send this to a friend