news

New molecule developed to fight microRNA-related disease

Posted: 30 July 2019 | | No comments yet

Newly developed HDO-antimiR could lead to new ways to treat diseases which are caused by malfunctioning miRNAs.

Scientists have developed a new molecule that can silence or inhibit malfunctioning miRNA, with the hope that it could lead to new ways to treat diseases caused by miRNAs. Creating a new type of antimiR, which is a molecule that inhibits miRNA, could provide the foundation for new gene therapies.

Kotaro Yoshioka and Takanori Yokota from Tokyo Medical and Dental University (TMDU) recently developed a new type of antimiR with heightened efficacy against miRNA and lowered toxicity, using their original hetero duplex oligonucleotides (HDO) technique. They combined an antimiR with its complementary RNA to produce a new molecule, termed ‘HDO-antimiR’. They then evaluated the strength of HDO-antimiR in inhibiting miRNA, assessed its biological distribution and checked its specific action by modifying its structure in mice. 

“HDO-antimiR has a unique double-strand structure that is totally different from previously described antimiRs,” said Yokota. “This structure is responsible for a substantial increase in the potency of miRNA silenced by HDO-antimiR compared with the single-stranded parent antimiR.”

 

Reserve your FREE place

 


Are low affinity or poor TCR yields slowing you down?

Explore how CHO expression of soluble TCRs and TCR affinity maturation workflows via phage, serving as essential building blocks for early-stage TCR-TCE candidate generation.

22 October 2025 | 16:00 PM BST | FREE Webinar

Join Jiansheng Wu, Ph.D. to explore two integrated strategies:

  • High-titer CHO-based expression of sTCRs (~100 mg/L), enabling scalable and high-throughput production
  • Optimized phage display affinity maturation, improving TCR binding by up to ~10,000-fold

Whether you’re starting a new TCR program or optimizing an existing platform, this session will offer actionable strategies to accelerate discovery and improve candidate quality.

Register Now – It’s Free!

 

The researchers found that compared with conventional antimiR, HDO-antimiR was 12 times as efficient in terms of binding to targeted miRNA and had improved potency within cells, HDO-antimiR also produced enhanced phenotypic effects in mice, specifically increasing the expression of mRNA that targets miRNA, leading to greater miRNA inhibition.

The heightened potency of HDO-antimiR was not related to high bio-stability or an increased rate of delivery to the targeted cell. Although these are common explanations for increased potency, in this case it was a reflection of improved strength once the molecule had entered the cells.

This indicates that the unique structure of HDO-antimiR enabled it to behave differently than other types of miRNA inhibitors.

The study was published in Nucleic Acids Research.

Leave a Reply

Your email address will not be published. Required fields are marked *