news

Computational model identifies new candidate cancer genes

A novel computational method has led to the discovery of genes whose alteration may contribute to cancer susceptibility and may lead to new therapeutic targets for cancers.

A novel computational method could lead to new therapeutic targets for numerous cancers, according to the developers. 

The programme is an integration of Epi-DNA and Gene Expression (iEDGE) – whose application to the analysis of over 8,500 tumour profiles from The Cancer Genome Atlas has led to the discovery of genes whose alteration (mutation or copy number alteration) may contribute to cancer susceptibility.

The researchers, from Boston University School of Medicine (BUSM), US, have said that iEDGE identified several candidate breast cancer drivers, including RBM17 (a splicing factor amplified in Triple-Negative Breast Cancer) and SIRT3 (a candidate tumor suppressor and a promising therapeutic target).

 

Reserve your FREE place

 


Are you looking to optimise antibody leads in your drug discovery? Register for this webinar to find out how!

30 July 2025 | 10:00 AM BST | FREE Webinar

Join this webinar to hear from Dr. Lei Guo as she shares how early insights into liability, PK, stability, and manufacturability can help you optimise antibody leads in early drug discovery – and mitigate downstream risks later in development.

What You’ll Learn:

  • How to assess key developability risks early
  • How in silico modelling and in vitro testing can be combined to predict CMC risks earlier in discovery stage
  • How micro-developability strategies are tailored for complex or novel formats

Don’t miss your chance to learn from real-world leaders

Register Now – It’s Free!

 

It also identified multiple candidate pan-cancer drivers, including TRIP13 (previously shown to promote tumour growth in colorectal cancer and a predictor of poor prognosis in prostate cancer), ORAOV1 (a gene over-expressed in many solid tumours) and TPX2 (a potent oncogene amplified in many cancers and a promising therapeutic target), among others.

“While further functional studies will be needed to evaluate the therapeutic relevance of our findings, these results study show the efficacy of iEDGE at identifying candidate drivers and potentially novel targets for therapy,” explained corresponding author Stefano Monti, PhD, associate professor of medicine at BUSM.

The researchers reported their findings in Nature.

Leave a Reply

Your email address will not be published. Required fields are marked *