news

Scientists identify fusion peptide as promising COVID-19 drug target

Researchers working on related coronaviruses SARS and MERS have identified the membrane fusion peptide on the Spike protein as a possible drug target for SARS-CoV-2, the virus causing COVID-19.

coronavirus entering human cell

Work on SARS-CoV (severe acute respiratory syndrome coronavirus) and MERS-CoV (Middle East respiratory syndrome coronavirus) has enabled researchers to identify a possible antiviral drug target on SARS-CoV-2, the coronavirus causing the COVID-19 pandemic.

The team set out to understand how membrane fusion – the process by which viruses infect human cells – occurs. To do this they began investigating the structure and characteristics of the Spike (S) glycoprotein on both SARS-CoV and MERS-CoV, focusing on the fusion peptide, which enables viruses to transfer their genome into host cells.

Membrane fusion is a multistep process, requiring the virus to recognise the correct type of host cell to infect via environmental cues, including chemical cues and which receptors are present on the host cell’s surface. The S protein is specific for a certain type of receptor – if found, the S protein binds to the receptor and then the fusion peptide portion interacts with the host cell membrane to open a fusion pore. The virus then transfers its genome into the host cell through this pore and the viral genome hijacks the cellular machinery to replicate and reproduce.

 

Access your FREE copy

 


Biomarkers aren’t just supporting drug discovery – they’re driving it

FREE market report

From smarter trials to faster insights, this report unpacks the science, strategy and real-world impact behind the next generation of precision therapies.

What you’ll unlock:

  • How biomarkers are guiding dose selection and early efficacy decisions in complex trials
  • Why multi-omics, liquid biopsy and digital tools are redefining the discovery process
  • What makes lab data regulatory-ready and why alignment matters from day one

Explore how biomarkers are shaping early drug development

Access the full report – it’s free!

 

In their study published in Antiviral Research the team discovered that calcium ions in the extracellular environment interacted with the fusion peptide to change its shape and how it interacts with the membranes, promoting MERS and SARS infection.

The rapid escalation of the COVID-19 pandemic led the team from Cornell University to compare the biological sequences of the fusion peptides of SARS-CoV and SARS-CoV-2, finding them to be a 93 percent match. So, the team are now using their work on MERS and SARS to develop an antibody that could block SARS-CoV-2 infection as the sequences are so similar. 

Leave a Reply

Your email address will not be published. Required fields are marked *