Scientists generate a mouse embryo model that develops neural tubes
Posted: 7 September 2022 | Ria Kakkad (Drug Target Review) | No comments yet
The new mouse embryo model system promises to spur research into developmental health and disease.


Scientists from the California Institute of Technology, US and the University of Cambridge, UK have generated a mouse embryo model, or embryoid, that develops beyond neurulation — formation of the neural tube, which gives rise to the central nervous system — and closely mirrors natural mouse embryos 8.5 days after fertilisation. These mouse embryoids offer a promising model system for research into factors affecting mammalian embryonic development and disease. The study was recently published in Nature.
To assemble the mouse embryoids, the researchers combined mouse embryonic stem cells (ESCs) with two types of mouse extraembryonic stem cells that give rise to the yolk sac and placenta. This combination enabled development of all brain regions, in contrast to embryo models that are derived from ESCs alone and lack extraembryonic tissue. The resulting mouse embryoids also developed a neural tube flanked by somites — precursor cells that give rise to the vertebrae, skeletal muscle, cartilage and other structures. The mouse embryoids had a gut tube and precursor cells for formation of sperm. The whole structure developed within a yolk sac that formed blood islands, structures in which blood cells are formed to support the embryo and contribute to the circulatory system.
Additionally, the neural tube of the mouse embryoids responded to a developmental challenge much like the neural tube of natural mouse embryos. The scientists assessed the effects of a lack of Pax6, a protein required for brain and eye development. The neural tubes of mouse embryoids assembled with mouse ESCs lacking Pax6 appeared identical to those that develop in natural mouse embryos lacking Pax6. The authors conclude that mouse embryoids can serve as an experimental model to dissect the genetic and epigenetic factors that regulate development and to screen for the effect of chemicals on mammalian embryo development.
Reduce preclinical failures with smarter off-target profiling
24 September 2025 | 15:00PM BST | FREE Webinar
Join this webinar to hear from Dr Emilie Desfosses as she shares insights into how in vitro and in silico methods can support more informed, human-relevant safety decisions -especially as ethical and regulatory changes continue to reshape preclinical research.
What you’ll learn:
- Approaches for prioritizing follow-up studies and refining risk mitigation strategies
- How to interpret hit profiles from binding and functional assays
- Strategies for identifying organ systems at risk based on target activity modulation
- How to use visualization tools to assess safety margins and compare compound profiles
Register Now – It’s Free!
Related topics
Disease Research, Stem Cells
Related conditions
mammalian embryonic disease
Related organisations
California Institute of Technology, University of Cambridge