news

Molecule identified as key in pancreatic cancer metastasis

New findings show that the environment for pancreatic cancers plays a role in its metastasis, revealing a new potential drug target.

A team of researchers have revealed that aggressive pancreatic cancer cells use a molecule to change their environment, enabling metastasis. According to the researchers, the surroundings of tumours is a potential untapped resource for cancer therapy and one they intend to explore further.

…the team observed that non-metastatic cancers began to spread when combined with metastatic fibroblasts

The investigation, conducted by the Garvan Institute of Medical Research, Australia, compared metastatic and non-metastatic pancreatic cancers. The tissue is known as the ‘matrix’, similar to a glue that holds different cells in an organ or tumour together.

Using a mouse model, the researchers extracted fibroblasts from both types of tumours. Mixing these with the opposite cancer cells, the team observed that non-metastatic cancers began to spread when combined with metastatic fibroblasts.  

 

Reserve your FREE place

 


Are you advancing promising antibody leads, only to encounter issues with stability, PK or manufacturability later in development?

30 July 2025 | 10:00 AM BST | FREE Webinar

Join us for an expert-led webinar exploring how early-stage developability assessment can help reduce downstream risk and improve candidate selection.

What You’ll Learn:

  • How to identify key developability risks early including aggregation, PK, and manufacturability
  • How to implement high-throughput in vitro assays requiring <1 mg of antibody per test
  • How to combine in silico modeling with wet-lab analytics to guide early optimisation

Don’t miss your chance to learn from Dr Lei Guo.

Register Now – It’s Free!

 

“Our results suggest that some pancreatic cancer cells can ‘educate’ the fibroblasts in and around the tumour. This lets the fibroblasts remodel the matrix and interact with other, less aggressive cancer cells in a way that supports the cancer cells’ ability to spread,” said first author Dr Claire Vennin.

The researchers used mass spectrometry techniques to further investigate the fibroblasts. They discovered several molecules from metastatic tumours that were produced at higher rates than in the non-metastatic tumours.

The team found that the metastatic pancreatic tumours produce more of a molecule called perlecan. Using gene editing techniques, the researchers reduced the levels of perlecan in mouse models of aggressive metastatic pancreatic cancer. Through advanced live imaging techniques, they tracked individual cancer cells and revealed that lowered perlecan decreased the spread of tumours which also then responded better to chemotherapy.

“If we can specifically target the aggressive fibroblasts in patients harbouring precise genetic changes, we can make them more susceptible to our currently approved treatments, which would significantly change how we treat this aggressive cancer,” said Dr Vennin.

“Most cancer therapies today aim to target cancer cells themselves. The environment of tumours is a potential untapped resource for cancer therapy and one which we intend to explore further,” said Associate Professor Paul Timpson, Head of the Invasion and Metastasis Laboratory at the Garvan Institute.

The findings were published in Nature Communications.

Leave a Reply

Your email address will not be published. Required fields are marked *