news

Mass spec used to reveal glycan structures of COVID-19 Spike protein

High-resolution mass spectrometry has been used by researchers to map the glycan-processing states of the Spike protein of the SARS-CoV-2 virus, which causes COVID-19.

COVID-19 Spike protein

Using high-resolution mass spectrometry, researchers have mapped the glycan-processing states of the Spike (S) protein complex that allows the SARS-CoV-2 virus, which causes COVID-19, to infect human cells. 

The study was led by researchers at the University of Southampton, UK, who found that SARS-CoV-2 S glycans differ from typical host glycan processing, which they say may have implications in vaccine design.

As scientists seek to combat COVID-19, the development of vaccines has focused on the S protein, a protein complex composed of three protomers that protrudes from the virus and binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the surfaces of human cells. Previous research has shown that each of these protomers has 22 chemical sites that can go through glycosylation, which adds a glycan compound to a protein. According to the researchers, how these sites are glycosylated may affect which cells the virus can infect and the same processes could also shield some regions on the S protein from being neutralised by antibodies.

 

Reserve your FREE place

 


Are low affinity or poor TCR yields slowing you down?

Explore how CHO expression of soluble TCRs and TCR affinity maturation workflows via phage, serving as essential building blocks for early-stage TCR-TCE candidate generation.

22 October 2025 | 16:00 PM BST | FREE Webinar

Join Jiansheng Wu, Ph.D. to explore two integrated strategies:

  • High-titer CHO-based expression of sTCRs (~100 mg/L), enabling scalable and high-throughput production
  • Optimized phage display affinity maturation, improving TCR binding by up to ~10,000-fold

Whether you’re starting a new TCR program or optimizing an existing platform, this session will offer actionable strategies to accelerate discovery and improve candidate quality.

Register Now – It’s Free!

 

Investigating this particular process, the researchers expressed and purified recombinant glycosylated S complexes, then they used enzymes to cut these into peptides that each contained a single glycan but represented all glycan sites. They subsequently used mass spectrometry to determine the glycan composition at each site.

The team report that the SARS-CoV-2 S protein is less densely glycosylated than some other viral glycoproteins, possessing a sparse ‘glycan shield’, which they say may be beneficial for the development of neutralising antibodies.

Overall, the researchers say their new analysis provides a standard that can be used to measure the quality of the S antigen as scientists develop new vaccines and antibody tests.

The researchers’ findings were published in the journal Science

Related conditions
,

Related organisations