news

Researchers reveal therapeutic target for Influenza A

Posted: 25 June 2018 | | No comments yet

Researchers show altering the molecular interactions between the flu virus and host genes stunts virus replication…

Influenza A

Influenza A (flu A) hijacks host proteins for viral RNA splicing and blocking these interactions caused replication of the virus to slow, according to new research  by Dr Kristin W. Lynch,  chair of the Department of Biochemistry and Biophysics in the Perelman School of Medicine at the University of Pennsylvania, and doctoral student Matthew Thompson. Their results also suggest that infection with flu A may reduce splicing of some host genes, which could point to novel strategies for antiviral therapies.

Influenza A virus is a common human pathogen that causes 250,000 to 500,000 deaths per year worldwide. “Although vaccines and some antiviral drugs are available, it is crucial to understand influenza virus-host interactions at a molecular level in order to identify host vulnerabilities targeted by flu viruses, which could lead to developing new therapeutic options,” said Dr Lynch, whose lab focuses on the specific mechanisms and patterns of alternative RNA splicing and how it relates to human disease,

The transcription of DNA into messenger RNA – the process of a single gene encoding a single protein – isn’t as straightforward as once thought. The phenomenon of alternative RNA splicing – where a single gene can encode multiple proteins – was discovered over 30 years ago in viruses.

 

Reserve your FREE place

 


Reduce preclinical failures with smarter off-target profiling

24 September 2025 | 15:00PM BST | FREE Webinar

Join this webinar to hear from Dr Emilie Desfosses as she shares insights into how in vitro and in silico methods can support more informed, human-relevant safety decisions -especially as ethical and regulatory changes continue to reshape preclinical research.

What you’ll learn:

  • Approaches for prioritizing follow-up studies and refining risk mitigation strategies
  • How to interpret hit profiles from binding and functional assays
  • Strategies for identifying organ systems at risk based on target activity modulation
  • How to use visualization tools to assess safety margins and compare compound profiles

Register Now – It’s Free!

 

The flu A genome is comprised of eight single-strand segments of RNA. Three of these segments use alternative splicing to produce two essential viral proteins each, which are important in helping the virus gain entry into host cells. Working with cultures of human lung cells, the team’s proposed mechanism of how flu A virus interacts with human RNA splicing machinery suggests that keeping human splicing proteins from binding to the viral genome would help to stop its replication.

As a result, the researchers found that mutating sequences of the viral genome to prevent host proteins from binding caused viral RNA to splice incorrectly and eventually halt replication–thus slowing the spread of the virus in the body.

A balance between the two viral messenger RNAs must be maintained for the virus to successfully infect host cells and replicate. “Regulating splicing of the two viral proteins is a fundamental step in viral-host interaction and so a potentially new anti-viral remedy,” Dr Lynch said.

For now, her team is refining their understanding of the intricacies of viral reproduction in host cells. Their hope is to one day identify a specific molecular target for antiviral medications that can be used in the clinic.

The study has been published in Nature Communications.

Leave a Reply

Your email address will not be published. Required fields are marked *