news

Researchers use graphene for same-time, same-position biomolecule isolation and sensing

The study has highlighted an important advance in using graphene for electrokinetic bio-sample processing and analysis.

Cells and biological chain,molecules and abstract conception,3d rendering. Computer digital drawing.

Scientists at the University of Massachusetts Amherst, US have used graphene to overcome a major challenge to isolating and detecting molecules at the same time and the same place in a microdevice. The work, which was recently published in ACSNano, demonstrates an important advance in using graphene for electrokinetic bio-sample processing and analysis and could allow lab-on-a-chip devices to become smaller and achieve results faster.

“We usually first have to isolate them in a complex medium in a device and then send them to another device or another spot in the same device for detection,” explained Assistant Professor Jinglei Ping. “[By using graphene] we can isolate them and detect them at the same microscale spot in a microfluidic device at the same time — no one has ever demonstrated this before.”

“We found that, compared to typical inert-metal microelectrodes, the electrolysis stability for graphene microelectrodes is more than 1,000 times improved, making them ideal for high-performance electrokinetic analysis,” he continued.

 

Reserve your FREE place

 


Are you looking to optimise antibody leads in your drug discovery? Register for this webinar to find out how!

30 July 2025 | 10:00 AM BST | FREE Webinar

Join this webinar to hear from Dr. Lei Guo as she shares how early insights into liability, PK, stability, and manufacturability can help you optimise antibody leads in early drug discovery – and mitigate downstream risks later in development.

What You’ll Learn:

  • How to assess key developability risks early
  • How in silico modelling and in vitro testing can be combined to predict CMC risks earlier in discovery stage
  • How micro-developability strategies are tailored for complex or novel formats

Don’t miss your chance to learn from real-world leaders

Register Now – It’s Free!

 

Also, Ping added, since monolayer graphene is transparent, “we developed a three-dimensional multi-stream microfluidic strategy to microscopically detect the isolated molecules and calibrate the detection at the same time from a direction normal to the graphene microelectrodes.”

ICYMI: Scientists have created a new imaging technique with graphene which generates clearer pictures of the structures of small molecules.
READ MORE

The new approach developed in the work paves the way to the creation of lab-on-a-chip devices of maximal time and size efficiencies. Also, the approach is not limited to analysing biomolecules and can potentially be used to separate, detect, and stimulate microorganisms such as cells and bacteria.

Leave a Reply

Your email address will not be published. Required fields are marked *