news

Approved MS medication inhibits SARS-CoV-2 replication in vitro

Dimethyl fumarate (DMF), a multiple sclerosis (MS) drug, inhibited SARS-CoV-2 replication and the hyper-inflammatory immune response associated with COVID-19.

red viruses pouring out of pink human cell

Across the globe, researchers are hoping to discover an antiviral medication that can both effectively inhibit SARS-CoV-2 replication and simultaneously combat the extreme immune reaction causing the death of COVID-19 patients around the world.

Now, investigators, led by Christian Kanstrup Holm and David Olagnier, have shown that dimethyl fumarate (DMF), a drug approved for the treatment of multiple sclerosis (MS), can inhibit the growth of a range of viruses in vitro, including the novel coronavirus – SARS-CoV-2.

“As we are doing basic research, we obviously do not know whether the drug works on infections in humans, and it is up to the infectious disease experts to test for this. However, I have to say that I am very optimistic,” said Holm, an associate professor at the Department of Biomedicine at Aarhus University, Denmark.

 

Reserve your FREE place

 


Are you looking to optimise antibody leads in your drug discovery? Register for this webinar to find out how!

30 July 2025 | 10:00 AM BST | FREE Webinar

Join this webinar to hear from Dr. Lei Guo as she shares how early insights into liability, PK, stability, and manufacturability can help you optimise antibody leads in early drug discovery – and mitigate downstream risks later in development.

What You’ll Learn:

  • How to assess key developability risks early
  • How in silico modelling and in vitro testing can be combined to predict CMC risks earlier in discovery stage
  • How micro-developability strategies are tailored for complex or novel formats

Don’t miss your chance to learn from real-world leaders

Register Now – It’s Free!

 

According to the researchers, when the COVID-19 pandemic – caused by the SARS-CoV-2 virus – struck they were already testing a similar MS medication, called 4-octyl-itaconate, for efficacy against herpes simplex virus, smallpox virus (vaccinia virus) and zika virus, as part of the hunt for a broad spectrum antiviral drug. Both 4-octyl-itaconate and DMF are NRF2 (nuclear factor erythroid-2-related factor 2) agonists – NRF2 is a transcription factor that activates the expression of over 500 genes, including an antioxidant gene expression pathway. 

When SARS-CoV-2 emerged, the team said they decided to expand their investigation to include it, with surprising results. According to Holm, when 4-octyl-itaconate was applied to SARS-CoV-2 infected cells it “drastically reduced” the number of viral replicas produced. “At the same time, the drug inhibited the immune reaction or inflammatory condition that constitutes a large portion of the actual threat for coronavirus patients. People do not just die of the virus, but also of the inflammation that occurs in the lungs,” he added.

After obtaining these results, the group decided to test a corresponding approved product, DMF, with virtually the same inhibitory effect. According to the team, the company that holds the patent for DMF are preparing to test the drug in human trials.

“You can really save a lot of time when you are testing a medication that has already been approved and tested in another context,” said Holm with reference to the statutory phases involved in getting a medication approved from scratch.

The study was published in Nature Communications.

Leave a Reply

Your email address will not be published. Required fields are marked *