news

RNA sequencing reveals insight into tuberculosis infection

Using single-cell RNA sequencing, researchers have shown that interferon response is correlated with tuberculosis progression.

Tuberculosis in lungs

Researchers may have found a new pathway to treat and control tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb). Using single-cell RNA sequencing (scRNAseq), a next-generation sequencing technology, the scientists from the study were able to further define the mechanisms that lead to TB infection and latency. 

The research was conducted at the Southwest National Primate Research Center (SNPRC) at Texas Biomedical Research Institute (Texas Biomed), US. 

“ScRNAseq is a novel approach that has developed in the past three or four years. It is an approach that allows us to look at the immune response more granularly, in higher resolution,” said Dr Deepak Kaushal, one of the co-lead researchers. “We were able to identify an immune response to Mtb infection in single lung cells as the infection progressed to disease, in some cases, or was controlled in others.”

 

Access your FREE copy

 


Biomarkers aren’t just supporting drug discovery – they’re driving it

FREE market report

From smarter trials to faster insights, this report unpacks the science, strategy and real-world impact behind the next generation of precision therapies.

What you’ll unlock:

  • How biomarkers are guiding dose selection and early efficacy decisions in complex trials
  • Why multi-omics, liquid biopsy and digital tools are redefining the discovery process
  • What makes lab data regulatory-ready and why alignment matters from day one

Explore how biomarkers are shaping early drug development

Access the full report – it’s free!

 

The study highlighted that plasmacytoid dendritic cells, which sense infection in the body, overproduce Type I interferons. Plasmacytoid dendritic cells are immune cells sent out to stop a bacteria or virus from replicating or causing disease. However, an overproduction of interferons can also cause harm.

In this study, the scientists observed that the interferon response correlated with disease instead of control. According to the team, this information is important to scientists developing TB therapeutics and vaccines. Modifications to therapeutic/vaccine formulas may be needed to address interferon signalling.

“When we have a more precise understanding of how an infection develops, that knowledge can lead us to identify new drugs or therapies to treat disease and improve vaccines,” Kaushal said. “Although our findings decreased the gap in knowledge of TB disease and latent infection, there is still more we need to learn.”

Results from the study were published in Cell Host & Microbe.

Leave a Reply

Your email address will not be published. Required fields are marked *