news

Green tea compound helps siRNA slip inside cells

Posted: 19 September 2018 | | No comments yet

Researchers have found a surprising use for EGCG: sneaking therapeutic RNAs into cells…

Drinking green tea has been linked to health benefits ranging from cardiovascular disease prevention to weight loss. Although many of these claims still need to be verified in the clinic, an antioxidant in green tea called epigallocatechin gallate (EGCG) appears to have beneficial effects in cells and animals. Now, researchers have found a surprising use for EGCG: sneaking therapeutic RNAs into cells. 

Small interfering RNAs (siRNAs) have great therapeutic potential because they can dial down the expression of disease-related genes. However, getting siRNAs into cells where they can do their job has been challenging. Being relatively large and negatively charged, siRNAs cannot easily cross the cell membrane, and they are susceptible to degradation by RNA-chomping enzymes. To overcome these problems, some researchers have tried coating siRNAs with various polymers. However, most small polymers can’t shuttle siRNAs into cells, whereas larger polymers can be effective but are generally toxic. Yiyun Cheng and colleagues wondered if they could use EGCG, which is known to bind strongly to RNA, in combination with a small polymer to form nanoparticles that safely deliver siRNA into cells.

The team made their nanoparticles by first combining EGCG and siRNA, which self-assembled into a negatively charged core. Then, the researchers coated this core with a shell consisting of a small, positively charged polymer. These nanoparticles efficiently knocked down the expression of several target genes in cultured cells, showing that the particles could cross the cell membrane. Next, the researchers tested the nanoparticles in a mouse model of intestinal injury, using a siRNA that targeted a pro-inflammatory enzyme. The nanoparticles improved symptoms such as weight loss, shortening of the colon and intestinal inflammation. In addition to the gene-silencing effects of the siRNA, EGCG could contribute to the nanoparticles’ effectiveness through its antioxidant and anti-inflammatory properties, the researchers say.

 

Reserve your FREE place

 


Are low affinity or poor TCR yields slowing you down?

Explore how CHO expression of soluble TCRs and TCR affinity maturation workflows via phage, serving as essential building blocks for early-stage TCR-TCE candidate generation.

22 October 2025 | 16:00 PM BST | FREE Webinar

Join Jiansheng Wu, Ph.D. to explore two integrated strategies:

  • High-titer CHO-based expression of sTCRs (~100 mg/L), enabling scalable and high-throughput production
  • Optimized phage display affinity maturation, improving TCR binding by up to ~10,000-fold

Whether you’re starting a new TCR program or optimizing an existing platform, this session will offer actionable strategies to accelerate discovery and improve candidate quality.

Register Now – It’s Free!

 

They report their results in ACS Central Science.

Leave a Reply

Your email address will not be published. Required fields are marked *