Streamlining Biomanufacturing of Personalised Cancer Immunotherapies with Synthetic DNA
13 October 2025 | By
A Synthetic DNA Approach for Speed, Scale & Flexibility
List view / Grid view
13 October 2025 | By
A Synthetic DNA Approach for Speed, Scale & Flexibility
Complex biology is a discipline acknowledging that performing biological experiments in vitro should take account of the complexity of the biological context.1 While this may be a noble aim, it has proven difficult to incorporate these elements into the drug discovery process, especially at the high-throughput screening (HTS) stage.2
Autophagy is an important process to maintain cellular homeostasis and function.1 Basal levels of autophagy are essential for most cells to remove unwanted protein aggregates and damaged organelles in order to prevent diseases.2 However, sometimes cells are unable to maintain physiological stability as a consequence of altered autophagy, which leads…
In this issue: pharmacological targeting of mitochondrial dysfunction in Parkinson’s disease, the evolving role of three dimensional in-vitro cell culture techniques in drug discovery, and NGS: hunting mysterious ‘Dark Matter Genome’ towards rewriting the rules of genetic diseases.
Over the past decade, pharmaceutical industries have contributed enormously to the discovery of new innovative drugs that have saved countless human lives. Discovering new drugs is a complex team sport that requires an intellectual collaboration across many sectors. These advancements provide powerful tools that arm scientists in the quest for…
The upstream process encompasses the initial transfections of a gene of interest into host cells, the cloning of cell lines with desirable characteristics (e.g. high productivity) and subsequent scale-up to large scale manufacture.
Drug discovery is a lengthy process that proceeds through several stages. High throughput screening (HTS) utilising whole-cell based screening assays play a fundamental role as a starting point for identifying novel compounds in the drug discovery process.1,2
Drug discovery has always been challenging; today, more so than ever. While there has been success in addressing many diseases, others remain intractable...
The microscope slide is flat (2D), but the world around us is not – despite the flat-earth theories. We need volume information about our samples, ideally with high resolution in all three dimensions as well as over time – the fourth dimension...
The world of healthcare is rapidly evolving. With an ageing population, comes a significant increase in cancers, metabolic diseases and neurodegenerative disorders. New drug candidates are required; however drug development remains a lengthy and expensive process, with the average timeline now over 10 years and costs continuing to rise...
How times change. Up to 15 years ago, you would be hard-pressed to find a drug discovery conference with a track dedicated to phenotypic approaches. The underpinning science was called high-content imaging or analysis, being mainly confined to academic drug discovery labs and a handful of pioneers in industry. but…
Chemotherapy with cytotoxic and growth inhibitory drugs have played an important role in cancer therapy, used either alone or in combination with other treatment modalities such as surgery, radiation or biological therapy. Chemotherapy, in most instances, was the only alternative treatment for metastatic cancer – mainly given as drug combinations...
Mesenchymal stem cells (MSCs) are fibroblast-like cells that give rise to mesenchymal derivatives including bone, fat and cartilage cells. In addition to the bone marrow, they can be readily obtained from adult vascularised peripheral tissues including adipose, olfactory, respiratory tissue, and peripheral blood.
Kidneys are crucial for filtration of drugs and toxins and their proper function is essential for overall health. Unfortunately, due to disease and improper function, kidney transplantation or dialysis are necessary for millions of patients annually all over the world.1,2
In the annual report of the Chief Medical Officer, 1 Dame Sally Davies has declared that we are part of ‘generation genome’ – the era in which we reap the rewards of our advances in genomic technologies and improvements in our understanding of the whole genome in human health.
For lead optimisation, target-based assays are still the most affordable means of rapidly performing fast iterations and remain core to screening. However, the desire for biological relevance is driving ongoing growth in cell-based assays.