news

Team creates new nanoplatform for delivering drugs into T cells

Researchers have developed a pH-sensitive drug delivery system in T cells using C-terminal dendrimers with Phenylalanine.

3d illustration proteins with lymphocytes , t cells or cancer cells

Researchers from Osaka Prefecture University (OPU), Japan have revealed findings that could aid the development of nanoplatforms for direct delivery to T cells to control their functions, a process useful for cancer immunotherapy. The study was recently published in the Journal of Materials Chemistry B.

The researchers performed an experimental study constructing a pH-sensitive delivery system into T cells and their subsets by using carboxy-terminal dendrimers (highly ordered, branched polymeric molecules) bearing phenylalanine (Phe) and hydrophobic acid anhydride (cyclohexanedicarboxylic anhydride, CHex), such as PAMAM-CHex-Phe and PAMAM-Phe-CHex. These dendrimers showed a higher association with splenocyte-derived T cells, which suggests that the hydrophobic effect significantly influences the association of dendrimers with immune cells.

The T-cell association of these dendrimers was examined at different pH and temperatures using fluorescence-activated cell sorting, where murine splenocytes stained with an anti-CD3 antibody were used. Along with this, the association of PAMAM-CHex-Phe and PAMAM-Phe-CHex with some culture cell lines and T cell subsets, such as CD4-positive helper T cells (CD3+CD4+), CD8- positive killer T cells (CD3+CD8+) and activated T cells (CD3+CD69+) was also examined. In order to confirm the internalisation of these dendrimers into T cells, the team used confocal microscopic imaging to observe the intracellular distribution of PAMAM-CHex-Phe and PAMAM-Phe-CHex.

 

Reserve your FREE place

 


Are low affinity or poor TCR yields slowing you down?

Explore how CHO expression of soluble TCRs and TCR affinity maturation workflows via phage, serving as essential building blocks for early-stage TCR-TCE candidate generation.

22 October 2025 | 16:00 PM BST | FREE Webinar

Join Jiansheng Wu, Ph.D. to explore two integrated strategies:

  • High-titer CHO-based expression of sTCRs (~100 mg/L), enabling scalable and high-throughput production
  • Optimized phage display affinity maturation, improving TCR binding by up to ~10,000-fold

Whether you’re starting a new TCR program or optimizing an existing platform, this session will offer actionable strategies to accelerate discovery and improve candidate quality.

Register Now – It’s Free!

 

Image showing microscopic photo ofDendrimers in T cells.ic image of

Detailed microscopic imaging showing the intracellular distribution of carboxy-terminal Phe- and CHex-modified dendrimers into T cells
[Credit: Chie Kojima, Osaka Prefecture University].

“Although T cells play important roles in various immune reactions, there are only a few reports on delivery systems into T cells. In this study, we applied the Phe-modified dendrimers to a pH-sensitive drug delivery system into T cells. Dendrimers with different amino acids and acid anhydrides were synthesised and their pH-responsive association with T cells and their subsets was investigated,” said Associate Professor Chie Kojima.

This experimental study has successfully presented the findings in terms of synthesis and pH sensitivity of the carboxy-terminal dendrimers bearing Phe; pH-responsive association of the carboxy-terminal dendrimers bearing Phe with T cells and T cell subsets including activated T cells; and internalisation of PAMAM-Phe-CHex and PAMAM-CHex-Phe into T cells.

“Our results showed that Phe- and CHex-modified dendrimers have a delivery potential to T cells and their subsets. This will play a key role in cancer immunotherapy,” concluded Kojima.

Leave a Reply

Your email address will not be published. Required fields are marked *